metabelian, supersoluble, monomial
Aliases: C6.5D6, C32⋊2Q8, C3⋊1Dic6, Dic3.S3, C2.5S32, C3⋊Dic3.2C2, (C3×C6).5C22, (C3×Dic3).1C2, SmallGroup(72,24)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊2Q8
G = < a,b,c,d | a3=b3=c4=1, d2=c2, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Character table of C32⋊2Q8
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -1 | 2 | -1 | 0 | 2 | 0 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -1 | 2 | -1 | 0 | -2 | 0 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ10 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | 1 | -√3 | 0 | 0 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ11 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | -2 | 1 | √3 | 0 | 0 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ12 | 2 | -2 | -1 | 2 | -1 | 0 | 0 | 0 | -2 | 1 | 1 | 0 | -√3 | √3 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ13 | 2 | -2 | -1 | 2 | -1 | 0 | 0 | 0 | -2 | 1 | 1 | 0 | √3 | -√3 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ14 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ15 | 4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 19 14)(2 15 20)(3 17 16)(4 13 18)(5 21 10)(6 11 22)(7 23 12)(8 9 24)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)
G:=sub<Sym(24)| (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,21,10)(6,11,22)(7,23,12)(8,9,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13)>;
G:=Group( (1,19,14)(2,15,20)(3,17,16)(4,13,18)(5,21,10)(6,11,22)(7,23,12)(8,9,24), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13) );
G=PermutationGroup([[(1,19,14),(2,15,20),(3,17,16),(4,13,18),(5,21,10),(6,11,22),(7,23,12),(8,9,24)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)]])
G:=TransitiveGroup(24,62);
C32⋊2Q8 is a maximal subgroup of
C32⋊2SD16 C32⋊Q16 S3×Dic6 Dic3.D6 D6.D6 D6.3D6 D6.4D6 C9⋊Dic6 He3⋊2Q8 C33⋊4Q8 C33⋊5Q8 CSU2(𝔽3)⋊S3 Dic3.S4 C3⋊Dic30 C32⋊3Dic10
C32⋊2Q8 is a maximal quotient of
Dic3⋊Dic3 C62.C22 C9⋊Dic6 He3⋊2Q8 C33⋊4Q8 C33⋊5Q8 Dic3.S4 C3⋊Dic30 C32⋊3Dic10
Matrix representation of C32⋊2Q8 ►in GL4(𝔽5) generated by
0 | 0 | 1 | 0 |
0 | 4 | 0 | 4 |
4 | 0 | 4 | 0 |
0 | 1 | 0 | 0 |
4 | 0 | 4 | 0 |
0 | 4 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 1 | 0 |
0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [0,0,4,0,0,4,0,1,1,0,4,0,0,4,0,0],[4,0,1,0,0,4,0,1,4,0,0,0,0,4,0,0],[0,1,0,0,4,0,0,0,0,0,0,1,0,0,4,0],[0,3,0,0,3,0,0,0,0,3,0,2,3,0,2,0] >;
C32⋊2Q8 in GAP, Magma, Sage, TeX
C_3^2\rtimes_2Q_8
% in TeX
G:=Group("C3^2:2Q8");
// GroupNames label
G:=SmallGroup(72,24);
// by ID
G=gap.SmallGroup(72,24);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,20,61,26,168,1204]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊2Q8 in TeX
Character table of C32⋊2Q8 in TeX